What is the product rule in differentiation?

The product rule is a special rule that exists for differentiating products of two (or more) functions. It states: If y=uv, then dy/dx= u(dv/dx) + v(du/dx). So when we have a product to differentiate we can use this formula.For example, suppose we want to differentiate y=x2(cos3x). In this question u=x2 and our v=cos(3x). So following the formula, our first step is to differentiate the u and v terms. du/dx=2x and dv/dx= -3sin(3x). We now put all these results into the given formula:dy/dx= u(dv/dx) + v(du/dx) = x2 x (-3sin3x) + 2x x cos3x We can tidy this answer up by noticing there is a common factor of x giving us this as a final answer: dy/dx= x(-3xsin3x+ 2cos3x )

IA
Answered by Ife A. Maths tutor

4008 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


An open-topped fish tank is to be made for an aquarium. It will have a square base, rectangular sides, and a volume of 60 m3. The base materials cost £15 per m2 and the sides £8 per m2. What should the height be to minimise costs?


How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


Find the integral of xcos(2x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences