What is the product rule in differentiation?

The product rule is a special rule that exists for differentiating products of two (or more) functions. It states: If y=uv, then dy/dx= u(dv/dx) + v(du/dx). So when we have a product to differentiate we can use this formula.For example, suppose we want to differentiate y=x2(cos3x). In this question u=x2 and our v=cos(3x). So following the formula, our first step is to differentiate the u and v terms. du/dx=2x and dv/dx= -3sin(3x). We now put all these results into the given formula:dy/dx= u(dv/dx) + v(du/dx) = x2 x (-3sin3x) + 2x x cos3x We can tidy this answer up by noticing there is a common factor of x giving us this as a final answer: dy/dx= x(-3xsin3x+ 2cos3x )

IA
Answered by Ife A. Maths tutor

4473 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following: sinx - cosx = 0 for 0≤x≤360


Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.


∫ 4/x^2+ 5x − 14 dx


Find the sum of the first n odd numbers, 1+ 3 + … + 2n-1, in terms of n. What might a mathematician’s thought process be?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning