Find and simplify the point(s) of intersection of the curves: x^2 + y^2 =6 , y = x - 3

Substituting y = x-3 into the first equation and expanding brackets:(x-3)2+x2 = 6 <=> 2x2 -6x +9 =6 <=> 2x2 -6x +3 =0Solving by using the quadratic formula:x=(6+- sqrt(36-4(2)(3)))/4 = (6+- sqrt(12))/4 Using the product rule for surds:x=(6+- 2sqrt(3))/4 = (3+- sqrt(3))/2Substituting back into y=x-3:y=(-3+- sqrt(3))/2So our final answer is: ( (3+sqrt(3))/2 , (-3+ sqrt(3))/2) and ( (3-sqrt(3))/2 , (-3- sqrt(3))/2)

ER
Answered by Evans R. Maths tutor

2754 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simulateous equations: 3x+y=11 and 2x+y=8


Line A is parallel to the line 4y+12x=24. Find the equation of Line A if it passes through the point (5,40/3).


David travels from home to work at 30 mph. At the end of the day, he travels from work back home via the same route at 40 mph. What is his average speed while travelling? (Give your answer as a simplified fraction) (None-Calculator)


If a and b are the roots of the quadric polynomial 2x^2+6x+7 what are a+b and ab?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences