Explain the relative resistance to bromination of benzene compared with alkenes.

Benzene has a delocalised pi system in which p orbitals of all carbon atoms overlap above and below the carbon ring. Alkenes, however, have localised pi-orbital overlaps between two carbon atoms. The electron density in the localised system is much greater than the delocalised system in benzene. This greater electron density in alkenes allows a dipole to be induced more readily in bromine and thus makes alkenes more susceptible to electrophilic attack. The electron density in benzene's pi system is not significant enough to produce an electrophile, and thus benzene does not readily undergo electrophilic substitution.

Answered by Jasmine W. Chemistry tutor

11576 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Magnesium is a bulk metal in our bodies. What is it’s main role regarding ATP?


Describe the effects of changing the temperature on a reaction using Le Chatelier's princriple


Why does the atomic radius decrease as you move along a period.


What is the difference between Sn1 and Sn2 reactions?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy