Find the coordinates of the point of intersection of the lines 2x + 5y = 5 and x − 2y = 4.

Rearrange both equations to make y the subject:2x + 5y = 5 rearranges to y = -2x/5 + 1 and x - 2y = 4 rearranges to y = x/2 - 2Equate both the rearranged equations and solve for x:-2x/5 + 1 = x/2 - 2x = 10/3Substitute x into one of the equations to solve for y:2(10/3) + 5y = 5y = - 1/3So the coordinates of intersection are: (10/3, - 1/3)

EO
Answered by Ethan O. Maths tutor

4111 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that r^2(r + 1)^2 - r^2(r - 1)^2 ≡ 4r^3.


If y=3x^3e^x; find dy/dx?


Given that y=x/(2x+5) find dy/dx.


By forming and solving a quadratic equation, solve the equation 5*cosec(x) + cosec^2(x) = 2 - cot^2(x) in the interval 0<x<2*pi, giving the values of x in radians to three significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning