Find the coordinates of the point of intersection of the lines 2x + 5y = 5 and x − 2y = 4.

Rearrange both equations to make y the subject:2x + 5y = 5 rearranges to y = -2x/5 + 1 and x - 2y = 4 rearranges to y = x/2 - 2Equate both the rearranged equations and solve for x:-2x/5 + 1 = x/2 - 2x = 10/3Substitute x into one of the equations to solve for y:2(10/3) + 5y = 5y = - 1/3So the coordinates of intersection are: (10/3, - 1/3)

EO
Answered by Ethan O. Maths tutor

3801 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


The line L1 has vector equation,  L1 = (  6, 1 ,-1  ) + λ ( 2, 1, 0). The line L2 passes through the points (2, 3, −1) and (4, −1, 1). i) find vector equation of L2 ii)show L2 and L1 are perpendicular.


Prove by contradiction that 2^(1/3) is an irrational number


Integration by parts; ∫e^x sin(x) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences