prove that lnx differentiated is 1/x

let y = lnx therefore e^y = x then differentiating both sides we get: dy/dx (e^y) = 1 dy/dx = 1/(e^y) and as e^y = x dy/dx = 1/x when y = lnx

Answered by Maths tutor

3688 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation x^2 + y^2 +8x -12y = 12


Intergrate ln(x) with resepct to x


Find the exact gradient of the curve y=ln(1-cos2x) at the point with x-coordinate π/6


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning