Find the co-ordinates of the turning point of the line with equation y = x^2 + ax + b that passes through (1, 47) and (2, 60)

y = x2 + ax + bWhen x=1:47 = (1)2 + a(1) + b47 = 1 + a + b46 = a + bWhen x = 260 = (2)2 + a(2) + b60 = 4 + 2a + b56 = 2a + b Let this be equation 1Let 46 = a + b be equation 2Subtract equation 2 from equation 110 = aSubstitute a = 10 into equation 246 = 10 + b36 = bTherefore the equation of the line is y = x2 + 10x + 36y = x2 + 10x + 36 = (x+5)2+36-25 = (x+5)2+11Turning point has co-ordinates (-5,11)

HM
Answered by Henry M. Maths tutor

2535 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Smartphones are on sale. A smartphone now costs only 80% of its original price. By how many per cent would we need to increase the current price of the smartphone in order to bring it back to the original price?


How can I work out the area of a semi-circle with a diameter of 12cm?


A graph is given with a plot of y = sin(x) for 0 <= x <= 360. Which value of x in the range 90 <= x <= 180 satisfies sin(x) = sin(30)?


The line AB has equation 3x +5y = 7 . Find the gradient of AB.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences