Find the co-ordinates of the turning point of the line with equation y = x^2 + ax + b that passes through (1, 47) and (2, 60)

y = x2 + ax + bWhen x=1:47 = (1)2 + a(1) + b47 = 1 + a + b46 = a + bWhen x = 260 = (2)2 + a(2) + b60 = 4 + 2a + b56 = 2a + b Let this be equation 1Let 46 = a + b be equation 2Subtract equation 2 from equation 110 = aSubstitute a = 10 into equation 246 = 10 + b36 = bTherefore the equation of the line is y = x2 + 10x + 36y = x2 + 10x + 36 = (x+5)2+36-25 = (x+5)2+11Turning point has co-ordinates (-5,11)

HM
Answered by Henry M. Maths tutor

2943 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equation- 2x+8y=10 and 3x+2y=5


(Economics A-level) Is the cross elasticity of demand for tea likely to be positive or negative following a rise in the price of milk? Explain your answer


The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.


The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning