Find the derivative of the function y = (2x + 12)/(1-x)

Using quotient rule, let u = 2x+12 and v = 1-x. Then we differentiate u and v separately, so u' = 2 and v' = -1. The formula for the quotient rule is: (vu' - uv')/v^2. Plugging in our values into this equation we get: vu'= 2-2x, uv' = -2x-12 and v^2 = (1-x)^2. Then vu' - uv' = 2 - 2x - (2x-12) = 2 -2x + 2x +12 = 14. So (vu' - uv')/v^2 = 14/(1-x)^2

MJ
Answered by Mahreen J. Maths tutor

3198 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 3sin(2x) + 5cos(2x) in the form Rsin(2x+a), R>0 0<a<pi/2


What is Differentiation?


What is the gradient of the function y=x^3 at the point x=1?


Find the equation of the normal of the curve xy-x^2+xlog(y)=4 at the point (2,1) in the form ax+by+c=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning