Find the derivative of the function y = (2x + 12)/(1-x)

Using quotient rule, let u = 2x+12 and v = 1-x. Then we differentiate u and v separately, so u' = 2 and v' = -1. The formula for the quotient rule is: (vu' - uv')/v^2. Plugging in our values into this equation we get: vu'= 2-2x, uv' = -2x-12 and v^2 = (1-x)^2. Then vu' - uv' = 2 - 2x - (2x-12) = 2 -2x + 2x +12 = 14. So (vu' - uv')/v^2 = 14/(1-x)^2

MJ
Answered by Mahreen J. Maths tutor

3165 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0


The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


Find an equation of the circle with centre C(5, -3) that passes through the point A(-2, 1) in the form (x-a)^2 + (y-b)^2 = k


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning