Find the derivative of the function y = (2x + 12)/(1-x)

Using quotient rule, let u = 2x+12 and v = 1-x. Then we differentiate u and v separately, so u' = 2 and v' = -1. The formula for the quotient rule is: (vu' - uv')/v^2. Plugging in our values into this equation we get: vu'= 2-2x, uv' = -2x-12 and v^2 = (1-x)^2. Then vu' - uv' = 2 - 2x - (2x-12) = 2 -2x + 2x +12 = 14. So (vu' - uv')/v^2 = 14/(1-x)^2

MJ
Answered by Mahreen J. Maths tutor

3060 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentiation and what can it tell me?


How do I find the equation of the tangent of a curve at a specific point.


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


how to write down the differential equation from a word problem, involving rate of change.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning