Find dy/dx when y = x^2(cos(x)).

y = x2(cos(x)) therefore we will need to use the product rule, 

dy/dx = u dv/dx + v du/dx

where u = x2 and v = cos(x)

du/dx = 2x and dv/dx = - sin(x), (don't forget the negative symbol when differentiating cosine)

dy/dx = x2(- sin(x)) + cos(x)(2x)

dy/dx = 2x(cos(x)) - x2(sin(x))

JS
Answered by Joseff S. Maths tutor

31772 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function f(x) where f(x)= x^2 +sin(x) + sin^2(x)


Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


Core 1 question: Draw the graph "y = 12 - x - x^2"


How can I remember trig identities?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning