Find dy/dx when y = x^2(cos(x)).

y = x2(cos(x)) therefore we will need to use the product rule, 

dy/dx = u dv/dx + v du/dx

where u = x2 and v = cos(x)

du/dx = 2x and dv/dx = - sin(x), (don't forget the negative symbol when differentiating cosine)

dy/dx = x2(- sin(x)) + cos(x)(2x)

dy/dx = 2x(cos(x)) - x2(sin(x))

JS
Answered by Joseff S. Maths tutor

30552 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.


Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form


How to complete the square?


A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning