Simplify (3x^2 - 15x)/(3x^2 - 13x -10)

Begin by considering the numerator and denominator separately, simplify both:
1) 3x^2 - 15x
Here, a common factor of 3x can be removed to give 3x(x^2 -5).
2) 3x^2 - 13x -10
This involves using two brackets each arranged as (ax+b)(cx+d). Unlike in 1), 3x cannot be removed as a common factor, but 3x must exist in order for 3x^2 to be present, therefore you get (3x+b)(x+d). The next thing to consider is how to multiply b and d to obtain 10, the factors of 10 are 1, 10, 2 and 5. As "-10" is in the expression to be simplified, one of the signs must be a minus. So considering 2 and 5, there are two possible answers: (3x - 2)(x+5) or (3x+2)(x-5), multiplying these out you find that the latter is the only possible solution.
Finally, putting the new simplified fraction together you get: (3x(x-5))/((3x+2)(x-5), (x-5) cancel on the numerator and denominator giving you a final, simplified, fraction of 3x/(3x+2).

GO
Answered by Gabriella O. Maths tutor

7917 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify the expression (x+5)(x+8).


Solve the simultaneous equations 6x - 27 = 15 and 4x + 3y = -3.


Solve the equation (2x+3)/(x-4)-(2x-8)/(2x+1)=1 and give the answer to 2 decimal places


solve z^4=2(1+isqrt(3)) giving roots in form r(cos(theta)+isin(theta))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences