Simplify (3x^2 - 15x)/(3x^2 - 13x -10)

Begin by considering the numerator and denominator separately, simplify both:
1) 3x^2 - 15x
Here, a common factor of 3x can be removed to give 3x(x^2 -5).
2) 3x^2 - 13x -10
This involves using two brackets each arranged as (ax+b)(cx+d). Unlike in 1), 3x cannot be removed as a common factor, but 3x must exist in order for 3x^2 to be present, therefore you get (3x+b)(x+d). The next thing to consider is how to multiply b and d to obtain 10, the factors of 10 are 1, 10, 2 and 5. As "-10" is in the expression to be simplified, one of the signs must be a minus. So considering 2 and 5, there are two possible answers: (3x - 2)(x+5) or (3x+2)(x-5), multiplying these out you find that the latter is the only possible solution.
Finally, putting the new simplified fraction together you get: (3x(x-5))/((3x+2)(x-5), (x-5) cancel on the numerator and denominator giving you a final, simplified, fraction of 3x/(3x+2).

GO
Answered by Gabriella O. Maths tutor

8041 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that (2x^2 + x -15)/(2x^3 +6x^2) * 6x^3/(2x^2 - 11x + 15) simplifies to ax/(x + b) where a and b are integers


Bag A contains £7.20 in 20p coins. Bag B contains only 5p coins. The number of coins in bag B is three-quarters of the number of coins in bag A. How much money is in bag B? (in £s)


How do I find f'(x) for f(x)=4x^3+x^2+5x+8?


i) The point A on a graph is (6,-7), and point B is (3,5). Calculate the equation of the straight line that passes through both A and B. ii) Does the line pass through the point C (-2,26)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences