Use integration by parts to evaluate: ∫xsin(x) dx.

Since our function is a product of two "mini-functions" of x, we are able to use integration by parts.The trick for this is to correctly set 'u' and 'dv'. 'u' should be labelled as the function which can reduce when differentiated. This means that the function should decrease in power. From our main function, we have both x, and sin(x). If we differentiate sin(x), we get cos(x), which hasn't decreased. However, if we differentiate x, we get 1, which has decreased in power.Using the integration by parts formula: ∫[udv] = uv - ∫[vdu].By setting u=x, and dv=sin(x), we can calculate 'du' and 'v' by differentiating u, and integrating dv respectively.u=x --> du=1, and dv=sin(x) --> v= -cos(x).Substituting this into the integration by parts formula stated above gives:∫[xsin(x)] = x*(-cos(x)) - ∫[(-cos(x)1)],Therefore ∫[xsin(x)] = -xcos(x) - ∫[(-cos(x)],And finally: ∫[xsin(x)] = -xcos(x) - (-sin(x)).This gives us our final answer of:∫[xsin(x)] = -xcos(x)+sin(x) + C, where C is the constant of integration.

BA
Answered by Bailey A. Maths tutor

3471 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate 4x^3 + 3x^2 -5x +1


I don't understand the point of differentiation or integration


What is differentiation and how do I do it?


Two particles A and B of mass 2kg and 3kg respectively are moving head on. A is moving at 5m/s and B is moving at 4m/s. After the collision, A rebounds at 4m/s. What is the speed of B and what direction is it moving in?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning