a) Integrate ln(x) + 1/x - x to find the equation for Curve A b) find the x coordinate on Curve A when y = 0.

a) Integrate ln(x) by parts: u = ln(x), dv/dx = 1, du/dx = 1/x, v = x int(udv/dx) = uv - int(du/dx * v) = ln(x)/x - x so int(ln(x) + 1/x - x) = ln(x)/x - x + ln(x) + x^2 + Cb) y = ln(x)/x - x + ln(x) + x^2 = 0 By logic, x will always be positive and through judgement/trial and error, x =1 OR, can rearrange: x = sqrt(x - ln(x)(1 + 1/x)) and carry out iterations until x=1 is found.

EN
Answered by Ellie N. Maths tutor

2698 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Rationalise the complex fraction: (8 + 6i)/(6 - 2i)


y = 2/x^3 find and expression for dy/dx


find the exact solution to the following equation: ln(x) + ln(3) = ln(6)


Find the equation of the tangent to the curve y = (5x+4)/(3x -8) at the point (2, -7)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning