a) Integrate ln(x) + 1/x - x to find the equation for Curve A b) find the x coordinate on Curve A when y = 0.

a) Integrate ln(x) by parts: u = ln(x), dv/dx = 1, du/dx = 1/x, v = x int(udv/dx) = uv - int(du/dx * v) = ln(x)/x - x so int(ln(x) + 1/x - x) = ln(x)/x - x + ln(x) + x^2 + Cb) y = ln(x)/x - x + ln(x) + x^2 = 0 By logic, x will always be positive and through judgement/trial and error, x =1 OR, can rearrange: x = sqrt(x - ln(x)(1 + 1/x)) and carry out iterations until x=1 is found.

EN
Answered by Ellie N. Maths tutor

2812 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate f'(1) for the function f(x) = (x^2 + 2)^5


Find the derivative of sinx, use that to find the derivative of xsinx


a) i) find dy/dx of y = 3x^4 - 8x^3 - 3 ii) then find d^2y/dx^2 b) verify that x=2 at a stationary point on the curve c c) is this point a minima or a maxima


Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning