a) Integrate ln(x) + 1/x - x to find the equation for Curve A b) find the x coordinate on Curve A when y = 0.

a) Integrate ln(x) by parts: u = ln(x), dv/dx = 1, du/dx = 1/x, v = x int(udv/dx) = uv - int(du/dx * v) = ln(x)/x - x so int(ln(x) + 1/x - x) = ln(x)/x - x + ln(x) + x^2 + Cb) y = ln(x)/x - x + ln(x) + x^2 = 0 By logic, x will always be positive and through judgement/trial and error, x =1 OR, can rearrange: x = sqrt(x - ln(x)(1 + 1/x)) and carry out iterations until x=1 is found.

EN
Answered by Ellie N. Maths tutor

2602 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^x


If 2 log(x + a) = log(16a^6), where a is a positive constant, find x in terms of a


The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


How do you know if the second derivative of an equation is a maximum or a minimum?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences