Show that 2sin(x) =(4cos(x)-1)/tan(x) can be written as: 6cos^2(x)-cos(x)-2=0

Rearranging gives:4cos(x)-1 = 2sin(x)tan(x) Substituting in tan(x)=sin(x)/cos(x) gives:4cos(x)-1 = 2sin(x)(sin(x)/cos(x))2sin2(x)=4cos2(x)-4cos(x)Substituting in 2sin2(x) = 2-2cos2(x) (from the trigonometric identity: sin2(x) = 1-cos2(x))2-2cos2(x)=4cos2(x)-4cos(x)Rearranging this by collecting like terms gives:6cos2(x)-cos(x)-2=0

OT
Answered by Olivia T. Maths tutor

17087 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of a straight line with the points P(5,3) and Q(8,12)


Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.


How do I find the equation of a tangent to a given point on a curve?


Solve the equation 2(cos x)^ 2=2-sin x for 0 <=x<=180


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning