Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.

Use the chain rule as this is a composite function. Let u=2x+5.So the original equation becomes y=(u)^2.Using the chain rule: dy/dx = dy/du * du/dxdy/du = 2udu/dx = 2So dy/dx= 4uSince u=2x+5, dy/dx = 4(2x+5)dy/dx = 8x+20Since stationary points occur when dy/dx=0, let 8x+20=0So 8x=-20So x=-2.5.

DP
Answered by Daniel P. Maths tutor

5277 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find gradient of functions


Differentiate y=x^4sinx


show that tan(x)/sec2(x) = (1/2)sin(2x)


The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning