Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.

Use the chain rule as this is a composite function. Let u=2x+5.So the original equation becomes y=(u)^2.Using the chain rule: dy/dx = dy/du * du/dxdy/du = 2udu/dx = 2So dy/dx= 4uSince u=2x+5, dy/dx = 4(2x+5)dy/dx = 8x+20Since stationary points occur when dy/dx=0, let 8x+20=0So 8x=-20So x=-2.5.

DP
Answered by Daniel P. Maths tutor

4855 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don't fully understand the purpose of integration. Could you please explain it to me?


Using the limit definition of the derivative, find the derivative of f(x)=sin(3x) at x=2π


Show that the equation 5sin(x) = 1 + 2 [cos(x)]^2 can be written in the form 2[sin(x)]^2 + 5 sin(x)-3=0


Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences