Solve the equation 7^(x+1) = 3^(x+2)

1st we will log both sides of the equation7(x+1) = 3(x+2) becomes log7(x+1) = log3(x+2)NEXT we will use the power law which is loga (x)k=k loga (x)This turns log7(x+1) = log3(x+2)to (x+1) log7 = (x+2)log3NEXT we will multiply out the bracketsxlog7 + log7 = xlog3 + 2log3NEXT we will collect x terms on left and 'number' terms on rightxlog7 - xlog3 = 2log3 - log7NEXT we will factorisex(log7 - log3) = 2log3 - log7NEXT isolate xx = (2log3 - log7)/(log7 - log3) = 0.2966

AE
Answered by Anwulika E. Maths tutor

4966 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to do Integration by Parts?


Solve the inequality x^2 > 3(x + 6)


x = 2t + 5, y = 3 + 4/t. a) Find dy/dx at (9.5) and b) find y in terms of x.


Represent in partial fraction form the expression x/x^2-3x+2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences