A-level: solve 8cos^2(x)+6sin(x)-6=3 for 0<x<2(pi)

8(1-sin^2(x))+6sin(x)-6=38(1-sin^2(x))+6sin(x)-9=08sin^2(x)-6sin(x)+1=0(2sin(x)-1)(4sin(x)-1)=02sin(x)-1=0 4sin(x)-1=02sin(x)=1 4sin(x)=1sin(x)=1/2 sin(x)=1/4x=(pi)/6 , 5(pi)/6 , 0.253 , 2.89

KM
Answered by Katie M. Maths tutor

5527 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you do simple integration?


Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


Calculate the integral of ln(x)


Differentiate with respect to x: F(x)=(x^2+1)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning