A-level: solve 8cos^2(x)+6sin(x)-6=3 for 0<x<2(pi)

8(1-sin^2(x))+6sin(x)-6=38(1-sin^2(x))+6sin(x)-9=08sin^2(x)-6sin(x)+1=0(2sin(x)-1)(4sin(x)-1)=02sin(x)-1=0 4sin(x)-1=02sin(x)=1 4sin(x)=1sin(x)=1/2 sin(x)=1/4x=(pi)/6 , 5(pi)/6 , 0.253 , 2.89

KM
Answered by Katie M. Maths tutor

5239 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


Let X be a normally distributed random variable with mean 20 and standard deviation 6. Find: a) P(X < 27); and b) the value of x such that P(X < x) = 0.3015.


A stationary point of inflection implies a second derivative of 0, does this work the other way around?


Write sqrt(50) in the form Asqrt(50) where A is an integer


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences