The perimeter of an isosceles triangle is 16cm. One of the sides equals to x+3, while the unequal one equals to x+4. Calculate the area of this triangle.

Firstly, we know that it is an isosceles triangle, meaning that 2 of its sides are equal. In this case, the uneven side is given as x+4, so we can assume that the triangle has 3 sides: AB= X+3BC= X+3AC= X+4The perimeter of a triangle is the sum of all its sides, therefore here we know that: Perimeter=AB+BC+AC 16=(x+3)+(x+3)+(x+4) 16= 3x+10 6=3x x=2SO: AB=5, BC=5, AC=6Area=(Base x Height )/2 = AC xAD/2Based on Pythagoras Theorem on the ADC triangle, AD2= AB2-AD2AD = AC/2 (as the triangle is isosceles) = 3so, AD2=25-9=16, AD=4AREA= 6 x 4/2= 12cm2

SK
Answered by Stella K. Maths tutor

2888 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and and simplify (x^2 + 7) (x - 1)


Write 2x^2 + 6x + 6 in the form a(x^2 + b) + c by completing the square.


Please sketch and factorize the quadratic 3x^2+10x+3.


What is Pythagoras' Theory?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences