If we take a number and square it, the answer is also the product of the two numbers either side of it plus one. Prove algebraically that this works for all numbers.

First of all let's give some examples: 5^2=4x6+1 = 25 or 6^2 = 5x7+1 = 36. To prove it for every number let's call the number x (e.g. x was 5 and 6 in the cases above). Then the result we want to prove is x^2= (x+1)(x-1)+1 (e.g. 5+1=6,5-1=4 in the first case). By expanding the right hand side (multiplying each term in each bracket) we get x^2 + x - x - 1 + 1, which simplifies to x^2. Since this is the same as the left hand side, we've proved the result algebraically.

MM
Answered by Miles M. Maths tutor

2749 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify: 2x + 6y + 2y - x


expand and simplify (x+6)(x-8)


There are "n" sweets in a bag, six are orange and the rest are yellow. If you take a random sweet from the bag and eat it. Then take at random another one and eat it. The probability of eating two orange sweets is 1/3. Show that n²-n-90=0.


How do you work out the nth term for a linear equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences