MYTUTOR SUBJECT ANSWERS

943 views

Make y the subject of (y/x)+(2y/(x+4))=3

We want to make y the subject of the equation and so we need to write it in the form y=f(x) where f(x) is a function in terms of x.

When rearranging equations with fractions for a certain subject, factorising will usually be involved. A good start to this would be to put everything over a common denominator (x(x+4)) which is the product of the two different denominators in the original equation. Recall that to maintain equality (i.e. the left hand side equals the right hand side), what you do to one side you must also do to the other side. This is an incredibly important rule that will help you solve the majority, if not, all of maths problems you will come across while avoiding mistakes.

So, to (y/x), we multiply by (x+4)/(x+4). Note that this is equal to 1, as any number divided by itself is 1, and any number multipled by 1 is itself so we aren't actually changing the equation. Simlarly for (2y/(x+4)) we multiply by (x/x). For the right hand side of the equation, we can multiply by (x(x+4))/(x(x+4)).

This gives us:

(y(x+4)+2xy)/(x(x+4))=3(x(x+4))/(x(x+4))

At this point we can multiply everything on both sides of the equation by (x(x+4)) to remove the denominator. We can do this because of the rule mentioned earlier: what we do to one side of the equation we must also do to the other side of the equation.

After this step we have:

xy+4y+2xy=3(x(x+4))

We want y as the subject of the equation so on the left hand side we factorise out the y term, as every term on the left hand side has y in it.

y(x+4+2x)=y(4+3x)=3(x(x+4))

Finally, we divide both sides by (4+3x):

y=(x(x+4))/(4+3x)

Henry L. IB Maths tutor, A Level Maths tutor, 13 plus  Maths tutor, 1...

1 year ago

Answered by Henry, a GCSE Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

622 SUBJECT SPECIALISTS

£18 /hr

Guido B.

Degree: Aeronautical Engineering (Masters) - Imperial College London University

Subjects offered:Maths, Science+ 3 more

Maths
Science
Physics
Further Mathematics
Biology

“Expert tuition from an expert. A second year Uni student who's completed the hassle of GCSEs and A Levels, and can teach you the easy way to pass and succeed!”

MyTutor guarantee

|  1 completed tutorial

£36 /hr

Gina J.

Degree: Economics with French (Bachelors) - Bristol University

Subjects offered:Maths, Spanish+ 2 more

Maths
Spanish
French
Economics

“Private tutor of Economics, Maths and French with six years of experience. I am passionate about teaching!”

£18 /hr

Shivani M.

Degree: Medicine (Bachelors) - Exeter University

Subjects offered:Maths, Chemistry+ 4 more

Maths
Chemistry
Biology
.UKCAT.
.BMAT (BioMedical Admissions)
-Medical School Preparation-

“I graduated with 5 A-levels last year and now study medicine at Exeter. I have mentored GCSE maths students for the last 2 years. I would love to hear from you!”

About the author

Henry L.

Currently unavailable: for new students

Degree: Chemical Engineering (Masters) - Bath University

Subjects offered:Maths, -Personal Statements-

Maths
-Personal Statements-

“About me- I am a chemical engineering student at the University of Bath. Mathematics and the sciences are subjects I have always enjoyed and I especially love applying the knowledge I have learnt in all sorts of areas, such as cooking ...”

You may also like...

Posts by Henry

Factorise z^3+1 into a linear and quadratic factor. Let y=(1+i√3)/2. Show that y is a cube root of -1. Show that y^2=y-1. Find the value of (1-y)^6.

Make y the subject of (y/x)+(2y/(x+4))=3

Other GCSE Maths questions

Sam uses 140g of flour to make 12 cakes. How much flour will Sam need to make 21 cakes?

expand and simplify (x+3)(x-7)

Tim stretches by leaning against a pole that is 1.5 metres tall and at a right angle to the floor. Tim is standing 0.5 metres away from the pole, how tall is Tim; leaving your answer in terms of metres? (2.d.p)

Solve the simultaneous equations 5x+2y=11 and x-y=-2.

View GCSE Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok