Expand and simplify the following equation: 3(2a+2) + 4(b+4)

This problem is best split into two parts either side of the '+' sign seen as they are independent of each other, so the first part: 3(2a+2), as the 3 is outside of the bracket we have to multiply everything inside the brackets by 3. So this comes out as: 6a + 6Now the same for the second bracket, 4(b+4) becomes 4b + 16 So written out fully we have 6a + 6 + 4b + 16, as the VARIABLES (a & b) are different they cannot be combined but 6 + 16 are CONSTANTS (as in proper numbers) so can be. So we get 6a + 4b + 22. It might be tempting to stop here however there is one more step. As all CONSTANTS, including those infront of the a & b, are divisible by 2, we can put in brackets and take out a factor of 2 like so: 2(3a+2b+11)

JI
Answered by Joseph I. Maths tutor

3745 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A linear equation has terms: a+2b, a + 6b, a + 10b, ......., ........ the second term equals 8 and the fifth term equals 44. Work out the value of a & b


Solve the following quadratic equation: 2x^2 - 5x - 3 = 0


Solve the simultaneous equations 3x - y = 5, x + 2y = -3


Factorise (x^2-100) and then solve for x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning