Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).

The first step in scoring full marks on this typically 4 mark question is to recognise what it's asking you to do. We use the process of differentiation to solve it. f(x)=2x^3 - 2x^2 + 8xf'(x) = 6x^2 - 4x + 8 as we multiply coefficients by the corresponding power of x and then reduce the power by 1. This also leaves the final term as a constant term without an x. The general rule we use is f'(x) = (na)x^(n-1) where our original equation has the form f(x) = ax^n.Using a similar method for f"(x) where the question asks us to differentiate again to find the second derivative, we find f"(x) = 12x - 4.

Answered by Maths tutor

3868 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


Integrate 1/(5-2x) for 3≤x≤4


By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0


solve 2cos^2(x) - cos(x) = 0 on the interval 0<=x < 180


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning