Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).

The first step in scoring full marks on this typically 4 mark question is to recognise what it's asking you to do. We use the process of differentiation to solve it. f(x)=2x^3 - 2x^2 + 8xf'(x) = 6x^2 - 4x + 8 as we multiply coefficients by the corresponding power of x and then reduce the power by 1. This also leaves the final term as a constant term without an x. The general rule we use is f'(x) = (na)x^(n-1) where our original equation has the form f(x) = ax^n.Using a similar method for f"(x) where the question asks us to differentiate again to find the second derivative, we find f"(x) = 12x - 4.

Answered by Maths tutor

3866 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C


How do you integrate tan^2(x)?


Why does the constant disappear when differentiating a function?


Differentiate y=(x-1)^4 with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning