Express as a simple logarithm 2ln6 - ln3 .

We start with: 2ln6 - ln3 ... First, we rewrite this expression as: ln6 + ln6 - ln3 ... Next, we rewrite this as: ln(23) + ln(23) - ln3 ... Using the log rule logaxy = logax + logxy, we express this as ln2 + ln3 + ln2 + ln3 - ln3 ... We simplify this to ln2 + ln2 + ln3 ... Using the log rule logax + logay = logaxy, we express this as ln (223) ... Finally, we can simplify this to ln12. Alternative method: We start with: 2ln6 - ln3 ... First, using the log rule: ylogax = loga(xy) we express this as ln(62)- ln3 ... Next, we rewrite this as: ln36 - ln3 ... Using the log rule logax - logxy = loga(x/y) we express this as ln(36/3) ... Finally, we can simplify this to ln12

Answered by Maths tutor

5135 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve 3 cos (2y )- 5 cos( y)+ 2 =0 where 0<y<360 degrees


Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6


Find the coordinates of the stationary point of the graph y = 3x^2 - 12x


If f(x)=(4x^2)-(8x)+3, find the gradient of y=f(x) at the point (0.5,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning