Express as a simple logarithm 2ln6 - ln3 .

We start with: 2ln6 - ln3 ... First, we rewrite this expression as: ln6 + ln6 - ln3 ... Next, we rewrite this as: ln(23) + ln(23) - ln3 ... Using the log rule logaxy = logax + logxy, we express this as ln2 + ln3 + ln2 + ln3 - ln3 ... We simplify this to ln2 + ln2 + ln3 ... Using the log rule logax + logay = logaxy, we express this as ln (223) ... Finally, we can simplify this to ln12. Alternative method: We start with: 2ln6 - ln3 ... First, using the log rule: ylogax = loga(xy) we express this as ln(62)- ln3 ... Next, we rewrite this as: ln36 - ln3 ... Using the log rule logax - logxy = loga(x/y) we express this as ln(36/3) ... Finally, we can simplify this to ln12

Answered by Maths tutor

4612 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that z=sin(x)/cos(x), show that dz/dx = sec^2(x).


Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...


The parametric equations of a curve are: x = cos2θ y = sinθcosθ. Find the cartesian form of the equation.


I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning