proof for the derivative of sin(x) is cos(x) (5 marks)

let f(x)=sin x f'(x) lim h-> 0 = ( sin(x+h) - sin(x))/h. f'(x) lim h-> 0 =( sin(x)cos(h) + cos(x)sin(h) - sin(x))/ h. f'(x) lim h-> 0=(sin(x)(cos(h)-1)/h + cos(x) (sin(h))/h. then as h tends to zero. (cos(h)-1)/h=0 and sin(h)/h =1. f'(x)= cos(x) QED

NP
Answered by Nicola P. Maths tutor

3614 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the first 4 non-zero terms in the binomial expansion of (2+3x)^6


With log base 4, solve log(2x+3) + log(2x+15) = 1 + log(14x+5)


How can I find the area under the graph of y = f(x) between x = a and x = b?


Find the general solution of the differential equation: d^2x/dt^2 + 5dx/dt + 6x = 2cos(t) - sin(t)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences