proof for the derivative of sin(x) is cos(x) (5 marks)

let f(x)=sin x f'(x) lim h-> 0 = ( sin(x+h) - sin(x))/h. f'(x) lim h-> 0 =( sin(x)cos(h) + cos(x)sin(h) - sin(x))/ h. f'(x) lim h-> 0=(sin(x)(cos(h)-1)/h + cos(x) (sin(h))/h. then as h tends to zero. (cos(h)-1)/h=0 and sin(h)/h =1. f'(x)= cos(x) QED

NP
Answered by Nicola P. Maths tutor

3472 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the equation of the normal line given a point on the curve?


Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)


The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


Why is the derivative of sin(x), cos(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences