proof for the derivative of sin(x) is cos(x) (5 marks)

let f(x)=sin x f'(x) lim h-> 0 = ( sin(x+h) - sin(x))/h. f'(x) lim h-> 0 =( sin(x)cos(h) + cos(x)sin(h) - sin(x))/ h. f'(x) lim h-> 0=(sin(x)(cos(h)-1)/h + cos(x) (sin(h))/h. then as h tends to zero. (cos(h)-1)/h=0 and sin(h)/h =1. f'(x)= cos(x) QED

NP
Answered by Nicola P. Maths tutor

3667 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentiation in mathematics and what does it represent?


How do I show two lines are skew?


Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.


Separate (9x^2 + 8x + 10)/(x^2 + 1)(x + 2) into partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences