proof for the derivative of sin(x) is cos(x) (5 marks)

let f(x)=sin x f'(x) lim h-> 0 = ( sin(x+h) - sin(x))/h. f'(x) lim h-> 0 =( sin(x)cos(h) + cos(x)sin(h) - sin(x))/ h. f'(x) lim h-> 0=(sin(x)(cos(h)-1)/h + cos(x) (sin(h))/h. then as h tends to zero. (cos(h)-1)/h=0 and sin(h)/h =1. f'(x)= cos(x) QED

NP
Answered by Nicola P. Maths tutor

3534 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the stationary point on the curve y=2x^2+3x+4=0


Find the equation of the tangent line to the graph of y=2x^4-7x^3+x^2+3x when x=5


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


A particle P moves with acceleration (-3i + 12j) m/s^2. Initially the velocity of P is 4i m/s. (a) Find the velocity of P at time t seconds. (b) Find the speed of P when t = 0.5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences