Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.

Using the Factor Theorem, we know that (2x + 1) = 2(x + 1/2) = 2(x - (-1/2) ) is a factor of p(x) if and only if p(-1/2) = 0, which is true. Now that we know a factor of p(x), we use the polynomial division method to find p(x) = (2x + 1)(15 x^2 - 11x + 2) and factorise the quadratic with some simple algebra 15 x^2 - 11x + 2 = 15 x^2 - 5x - 6x + 2 = 5x(3x - 1) - 2(3x - 1) = (3x - 1)(5x - 2), which gives us the final answer: p(x) = (2x + 1)(3x - 1)(5x - 2).

Answered by Maths tutor

4449 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .


differentiate the function (x^2 +5/x + 3) with respect to x


Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2


Find the positive value of x such that log (x) 64 = 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning