Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.

Using the Factor Theorem, we know that (2x + 1) = 2(x + 1/2) = 2(x - (-1/2) ) is a factor of p(x) if and only if p(-1/2) = 0, which is true. Now that we know a factor of p(x), we use the polynomial division method to find p(x) = (2x + 1)(15 x^2 - 11x + 2) and factorise the quadratic with some simple algebra 15 x^2 - 11x + 2 = 15 x^2 - 5x - 6x + 2 = 5x(3x - 1) - 2(3x - 1) = (3x - 1)(5x - 2), which gives us the final answer: p(x) = (2x + 1)(3x - 1)(5x - 2).

Answered by Maths tutor

4349 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graph of f(x) = sin(x). On the same set of axes, draw the graph of f(x)+2, f(2x) and f(-x). By observing your graphs of f(x) and f(x), if f(a)=1, what is the value of f(-a)?


Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.


Find the coefficient of x^4 in the expansion of: x(2x^2 - 3x + 1)(3x^2 + x - 4)


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning