Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.

Using the Factor Theorem, we know that (2x + 1) = 2(x + 1/2) = 2(x - (-1/2) ) is a factor of p(x) if and only if p(-1/2) = 0, which is true. Now that we know a factor of p(x), we use the polynomial division method to find p(x) = (2x + 1)(15 x^2 - 11x + 2) and factorise the quadratic with some simple algebra 15 x^2 - 11x + 2 = 15 x^2 - 5x - 6x + 2 = 5x(3x - 1) - 2(3x - 1) = (3x - 1)(5x - 2), which gives us the final answer: p(x) = (2x + 1)(3x - 1)(5x - 2).

Answered by Maths tutor

4151 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to find ∫ (x^2)sin(x) dx. (A good example of having to use the by parts formula twice.)


Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


Integrate the function f(x)=3^x+2 with respect to x


Find the 12th term and the sum of the first 9 terms on the following Arithmetic Progression: a = 2 and d = 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning