Find the roots of the quadratic equation, x^2 - 8x + 24 = 0, by completing the square.

Step 1:

The fisrt step is to use the following formula when asked to complete the square,

( x + (b/2) )2 - (b/2)2 + c = 0

Step 2

In our case, b=8,c=24

Hence our equation,

x2 - 8x + 24= 0

becomes 

(x + (-8/2) )2 - (-8/2)2 + 24 = 0

which is equal to

(x - 4 )2 - (4)2 + 24 = 0

(x - 4 )2 - 16 + 24 = 0

(x - 4 )2 + 8 = 0

Step 3:

Now we take 8 to the RHS, as this will allow us to take the square root of both sides.

(x - 4 )2 = -8

(x - 4 ) = +/- (-8)1/2

x = 4 +/- (-8)1/2

Hence the roots of x2 - 8x + 24= 0 are

x = 4 + (-8)1/2  and x = 4 - (-8)1/2

PK
Answered by Pantelis K. Maths tutor

7099 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What do I do when quadratic equations aren't written in the standard format ax^2 + bx + c = 0 ?


How do I find two prime numbers whose sum is 30?


Show that the square of any odd number is an odd number


What is completing the square?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning