Prove that the square of an odd number is always one more than a multiple of 4

If we say n is any number, then we know 2n represents an even number - any number multiplied by 2 is always even. 2n+1 represents an odd number - adding 1 to an even number always gives an odd number (2n + 1)2 = (2n + 1)(2n + 1) = 4n2 + 2n + 2n + 1 = 4n2 + 4n + 1 = 4(n2 + n) + 1. Here 4(n2 + n) represents a multiple of four so we have a multiple of 4 plus 1. Hence the square of an odd number is always one more than a multiple of 4.

RR
Answered by Rebecca R. Maths tutor

3431 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the range of solutions for the inequality 2(3x+1) > 3-4x?


Solve the equation x^3-5x^2+7x-3=0


v^2=u^2 + 2as u=12 a=-3 s = 18 Find v


A person leaves their flat at 8:00am and travels to work at an average speed of 32 mph. They arrive at work at 9:15am. Calculate the distance they travel to work.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning