Prove that the square of an odd number is always one more than a multiple of 4

If we say n is any number, then we know 2n represents an even number - any number multiplied by 2 is always even. 2n+1 represents an odd number - adding 1 to an even number always gives an odd number (2n + 1)2 = (2n + 1)(2n + 1) = 4n2 + 2n + 2n + 1 = 4n2 + 4n + 1 = 4(n2 + n) + 1. Here 4(n2 + n) represents a multiple of four so we have a multiple of 4 plus 1. Hence the square of an odd number is always one more than a multiple of 4.

RR
Answered by Rebecca R. Maths tutor

3055 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out 2 7/15 -1 2/3


Expand (2x + 5)(9x - 2).


How many past papers should i do before the exam?


David travels from home to work at 30 mph. At the end of the day, he travels from work back home via the same route at 40 mph. What is his average speed while travelling? (Give your answer as a simplified fraction) (None-Calculator)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning