Prove that the square of an odd number is always one more than a multiple of 4

If we say n is any number, then we know 2n represents an even number - any number multiplied by 2 is always even. 2n+1 represents an odd number - adding 1 to an even number always gives an odd number (2n + 1)2 = (2n + 1)(2n + 1) = 4n2 + 2n + 2n + 1 = 4n2 + 4n + 1 = 4(n2 + n) + 1. Here 4(n2 + n) represents a multiple of four so we have a multiple of 4 plus 1. Hence the square of an odd number is always one more than a multiple of 4.

RR
Answered by Rebecca R. Maths tutor

3308 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

x = 0.436363636... (recurring). Prove algebraically that x can be written as 24/55.


Write an equation for a line parallel to 2y = 4x - 10


Differentiate the following equation, y = x^9 + 3x^2 + x^(-1)


Jodie buys 12 cans of cola. There are 330 ml of cola in each can. Rob buys 4 bottles of cola. There is 1 litre of cola in each bottle. Rob buys more cola than Jodie. How much more?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning