Solve the following simultaneous equations. x^2 + 2y = 9, y = x + 3

x^2 + 2y = 9y = x + 3
x^2 + 2y = 9x^2 + 2(x+3) = 9x^2 + 2x + 6 = 9x^2 + 2x - 3 = 0(x + 3)(x - 1) = 0x= -3, x = 1
when x = -3y = x + 3y = (-3) + 3y = 0
when x = 1y = x + 3y = (1) + 3y = 4

JF
Answered by John F. Maths tutor

2666 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A right-angled triangle has a base of 5 cm, a height of 12 cm. Find the length of the hypotenuse.


Derive X^2 + 2x


With a bag of 5 blue marbles, 7 green marbles, and 3 red marbles. What is the probability of picking out two blue marbles? Pick them one at a time and do not replace them.


2x+y=18, x-y=6; Solve the simultaneous equations


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning