How can we determine stationary points by completing the square?

Suppose we have completed the square on y=ax^2+bx+c and attained y=a(x+p)^2+q, where a,b,c,p,q are real numbers with 'a' not equal to zero and p,q can be expressed in terms of a,b,c. For a>0 we have a minimum point, where x takes a value such that a(x+p)^2+q is smallest, giving x= -p and hence y=q. For a<0, we have a maximum point, where x takes a value such that a(x+p)^2+q is biggest, also giving x= -p and hence y=q. 

HY
Answered by Hayk Y. Maths tutor

15160 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you differentiate ln(sin(3x))?


f(x) = 2x^3 – 7x^2 + 4x + 4 (a) Use the factor theorem to show that (x – 2) is a factor of f(x). (2) (b) Factorise f(x) completely.


Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


How do I remember what trig functions differentiate to?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning