How can we determine stationary points by completing the square?

Suppose we have completed the square on y=ax^2+bx+c and attained y=a(x+p)^2+q, where a,b,c,p,q are real numbers with 'a' not equal to zero and p,q can be expressed in terms of a,b,c. For a>0 we have a minimum point, where x takes a value such that a(x+p)^2+q is smallest, giving x= -p and hence y=q. For a<0, we have a maximum point, where x takes a value such that a(x+p)^2+q is biggest, also giving x= -p and hence y=q. 

HY
Answered by Hayk Y. Maths tutor

14948 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the function (x^4 + 2x^3 - x -2)/(x+2)


How do you integrate (sinx)^3 dx?


The curve, C has equation y = 2x^2 +5x +k. The minimum value of C is -3/4. Find the value of k.


At x=3, is the polynomial y= (4/3)x^3 -6x^2 + 11 at a maxima or minima?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning