Prove that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.

A problem of this nature seems complex at first until you break it down and see what it is really asking you to find. We can represent two consecutive integers as x and x + 1. The problem asks us to prove something. It asks us to show that (x+1)2 - x2 is equal to the sum of x + (x+1) = 2x + 1.
Thanks to our notation, the answer falls into place quite easily. Expanding (x+1)2, as it is an algebraic identity, and solving for the difference between the two squares gives us the desired result.

Answered by Maths tutor

15669 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point P, (-1,4) lies on a circle C that is centered about the origin. Find the equation of the tangent to the circle at point P.


There are only 7 blue pens, 4 green pens and 6 red pens in a box. One pen is taken at random from the box. Write down the probability that this pen is blue.


Make a the subject of a+3=(2a+7)/r


Simplify 125^(-2/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning