Prove, by induction, that 4^(n+1) + 5^(2n-1) is always divisible by 21

Firstly when proving something by induction, we always show that the base case works, i.e. we plug in n=1. In this case we get 42 + 51 =21, which is divisible by 21. Next we state what is called the inductive hypothesis, this just means we assume it is true for n=k, i.e. we assume 4k+1 + 52k-1 is divisible by 21. Now we try to use this to show that the case n=k+1 is also true, in this case we consider 4k+2 + 52(k+1)-1 which can be manipulated as shown below4k+2 +52k+1 = 4* 4k+1 + 55 52k-1 = 4* 4k+! + 4* 52k-1 + 21* 52k-1 = 4*( 4k+1 + 52k-1) + 21* 52k-1Now, as we know that 4k+1 + 52k-1 is divisible by 21, we can see that the expression above is also divisible by 21.Lastly we conclude that because the case n=1 is true and if n=k is true then n=k+1 is true, the statement is true for all natural numbers n.

GS
Answered by Graeme S. Further Mathematics tutor

8977 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Write sin(4x) in terms of sin and cos.


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


A particle is moving in a straight line with simple harmonic motion. The period of the motion is (3pi/5)seconds and the amplitude is 0.4metres. Calculate the maximum speed of the particle.


How do you find the matrix corresponding to a transformation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences