A car is travelling with a velocity of "0.5t^2+t+2" m/s at t=0 (where t is in seconds), find the acceleration of the car at a) t=0 b)t=2

Acceleration can be described as the 'rate of change of velocity' as it is simply how quickly the car is increasing/decreasing in velocity. Therefore as the velocity is described as an expression of t - time in seconds after a certain point - and you know differentiation finds the gradient function of a polynomial, and as gradient is the rate of change of the polynomial, you can simply differentiate the expression for velocity with respect to t to find the function for acceleration of the car (in terms of t = t + 1). Now simply plug the values of t=0 and t=2 to find the acceleration of the car at those values of t.a) Acceleration = 1 ms-2b) Acceleration = 3 ms-2

DE
Answered by Dominic E. Maths tutor

2782 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I know if a curve is convex?


Given that (2x + 11 )/(2x + 1)(x + 3) ≡ A /(2x + 1) + B /(x + 3) , find the values of the constants A and B. Hence show that the integral from 0 to 2 (2x + 11)/ (2x + 1)(x + 3) dx = ln 15.


Find the area contained under the curve y =3x^2 - x^3 between 0 and 3


When do we use the quadratic formula, and when the completing the square method?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences