A car is travelling with a velocity of "0.5t^2+t+2" m/s at t=0 (where t is in seconds), find the acceleration of the car at a) t=0 b)t=2

Acceleration can be described as the 'rate of change of velocity' as it is simply how quickly the car is increasing/decreasing in velocity. Therefore as the velocity is described as an expression of t - time in seconds after a certain point - and you know differentiation finds the gradient function of a polynomial, and as gradient is the rate of change of the polynomial, you can simply differentiate the expression for velocity with respect to t to find the function for acceleration of the car (in terms of t = t + 1). Now simply plug the values of t=0 and t=2 to find the acceleration of the car at those values of t.a) Acceleration = 1 ms-2b) Acceleration = 3 ms-2

DE
Answered by Dominic E. Maths tutor

3080 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


Find the inverse of the function g(x)=(4+3x)/(5-x)


Solve for 0=<x<360 : 2((tanx)^2) + ((secx)^2) = 1


solve the differential equation dy/dx=(3x*exp(4y))/(7+(2x^(2))^(2) when y = 0, x = 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning