A car is travelling with a velocity of "0.5t^2+t+2" m/s at t=0 (where t is in seconds), find the acceleration of the car at a) t=0 b)t=2

Acceleration can be described as the 'rate of change of velocity' as it is simply how quickly the car is increasing/decreasing in velocity. Therefore as the velocity is described as an expression of t - time in seconds after a certain point - and you know differentiation finds the gradient function of a polynomial, and as gradient is the rate of change of the polynomial, you can simply differentiate the expression for velocity with respect to t to find the function for acceleration of the car (in terms of t = t + 1). Now simply plug the values of t=0 and t=2 to find the acceleration of the car at those values of t.a) Acceleration = 1 ms-2b) Acceleration = 3 ms-2

DE
Answered by Dominic E. Maths tutor

2842 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2


A function is defined parametrically as x = 4 sin(3t), y = 2 cos(3t). Find and simplify d^2 y/dx^2 in terms of t and y.


Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


Prove that √2 is irrational


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences