Solve for x: logx(25) = log5(x)

logx(25) = log5(x)2logx(5) = log5(x)2/log5(x) = log5(x)2 = (log5(x))^2sqrt(2) = log5(x)x = 5^sqrt(2)

Answered by Maths tutor

9706 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


a circle c has the equation x^2 + y^2 -4x + 10y = k. find the center of te circle


Solving harder exponential equations, e.g. 5/[exp(x) + 6exp(-x)] - 1 = 0 . CORE MATHS.


How do you find an angle in a right-angled triangle when you are given two of its side's lengths?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning