Solve for x: logx(25) = log5(x)

logx(25) = log5(x)2logx(5) = log5(x)2/log5(x) = log5(x)2 = (log5(x))^2sqrt(2) = log5(x)x = 5^sqrt(2)

Answered by Maths tutor

8740 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the Total Area between the curve x^3 -3x^2 +2x and the x-axis, when 0 ≤ x ≤ 2.


John wants to separate a rectangular part of his garden for his puppy. He has material for a 100-meter long fence and he plans to use one side of his house as a barrier. How should John select the sizes of his fence in order to gain the biggest territory?


A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.


Two forces P and Q act on a particle. The force P has magnitude 7 N and acts due north. The resultant of P and Q is a force of magnitude 10 N acting in a direction with bearing 120°. Find the magnitude of Q and the bearing of Q.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences