Simplify the following fraction - Numerator = 2(8-k) + 4(k-1) Denominator = k^2 - 36

The first task is to multiply out the brackets in the numerator. By doing this, we find that the numerator is equivalent to "12 + 2k". We should now simplify the denominator. We can convert it into two brackets by recognising that "k^2 -36" is the difference of two squares. Hence, we identify the square number which is 36 and so we simplify the expression to (k+6)(k-6).
We are ideally looking for a common factor in the numerator and denominator so that we can cancel them out. Therefore, we try and simplify the numerator further and we can. If we take out a common factor of 2 from "12+2k", we find that the expression is the same as "2(k+6)". Now that we have a common factor in the numerator and denominator, we can cancel the "(k+6)" out of the fraction. We are then left with the answer which is "2/k-6"

ML
Answered by Matteo L. Maths tutor

3199 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise f(x) = x^2+4x+4 and sketch the curve, identifying the roots and minimum point of f(x).


(This was taken from a GCSE past paper)A bag of 24 spoons costs £19.95. A box of 18 forks costs £15.55. Bags and boxes cannot be split. Gregor decides to buy the same number of spoons as forks. He places an order to buy the smallest number of each


What is the highest common factor and lowest common multiple?


Find the roots of x^2-9=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences