Ball P is shot at 18m/s horizontally from the top of a 32m mast. Ball Q is shot at 30m/s at an angle 'a' to the horizontal from the bottom of the mast. They collide mid-air. Prove that cos'a' = 3/5

Consider the positions of each ball as a function of time. Distance (position) is equal to velocity times time. We want 'cos' in the answer, so we'll work with the x axis. For ball P, the position is equal to 18t, since we are given the horizontal (x axis) velocity. For ball Q, the position is equal to the x component of its velocity, since it is shot at an angle 'a'. To find this we multiply the magnitude by cos'a', to get its x component. Then we can do the same, to work out its position as 30tcos'a'. When they collide, they are in the same x position at the same time, so we equate these two functions. 18t = 30tcos'a'. The t's cancel. Rearrange to get cos'a' = 18/30. This simplifies to cos'a' = 3/5

AF
Answered by Andrew F. Maths tutor

3395 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


Solve the following equation for k, giving your answers to 4 decimal places where necessary: 3tan(k)-1=sec^2(k)


y = 2t^2, and x = 3t^3 - 2. Find dy/dx in terms of t.


if f(x) = 4x^2 - 16ln(x-1) - 10, find f'(x) and hence solve the equation f'(x)=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning