Solve the equations x-y=1 and 5x-3y=13

These equations are what we call 'simultaneous' which means they are solved together. To do this, we need to make one of the variables (x or y) the subject of either of the equations.Rearranging the first equation to make x the subject gives,x=1+y. This can then be substituted into the other equation, leaving an equation with only one variable, 5(1+y)-3y=13. This means that it can be simply solved through re-arrangement! Simplification gives 5+5y-3y=13, 5-2y=13, -2y=-8, y=4. Finally, this y value can be subbed into either of the original 2 equations to give x. Subbing it into the first equation gives x=1+y, x=1+4=5

CK
Answered by Christopher K. Maths tutor

4236 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 31 days in January. January 21st 2015 was a Wednesday. What day of the week was February 8th 2015?


Clare buys some shares for $50x. Later, she sells the shares for $(600 + 5x). She makes a profit of x% (a) Show that x^2 + 90x − 1200 = 0


Vectors a and b are defined by a = 2i + 3j and b = 4i - 2j, find 3a-b in terms of i and j


Solve the following simultaneous equations, 1) 3x + 3y = 9 and 2) 4x + 2y = 13.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences