prove that any odd number squared is one more than a multiple of four.

any odd number can be written as (2n+1), where n is any integer (whole number). Squaring any odd number is therefore= (2n+1)2 . expanding the brackets gives =4n2+2n+2n+12 = 4n2+4n+1. factorising the 4 out of the first two terms gives =4(n2+n)+1. 4(n2+n) is a multiple of 4 due to the factored out 4, and the +1 after means that any odd number squared is one more than a multiple of 4.

HJ
Answered by Harry J. Maths tutor

3086 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 0=X^2 +5x +4


Expand and simplify (5a-2b)(3a-4b)


What is 800 million in standard form?


You are given a triangle ABC with sides length AB = 20cm, BC = 100cm and angle A = 70 degrees. Find the angle of C in degrees.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning