prove that any odd number squared is one more than a multiple of four.

any odd number can be written as (2n+1), where n is any integer (whole number). Squaring any odd number is therefore= (2n+1)2 . expanding the brackets gives =4n2+2n+2n+12 = 4n2+4n+1. factorising the 4 out of the first two terms gives =4(n2+n)+1. 4(n2+n) is a multiple of 4 due to the factored out 4, and the +1 after means that any odd number squared is one more than a multiple of 4.

HJ
Answered by Harry J. Maths tutor

2675 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove the quadratic formula for ax^2 + bx + c = 0, where a is non 0 and a,b and c are reals.


How do you solve a quadratic equation? eg: x^2 + 2x - 8


Finding out the length of one side of a triangle


What is the difference between the median and the mean values for this set of data: 11, 9, 21, 6, 18, 2, 17, 8, 7.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences