prove that any odd number squared is one more than a multiple of four.

any odd number can be written as (2n+1), where n is any integer (whole number). Squaring any odd number is therefore= (2n+1)2 . expanding the brackets gives =4n2+2n+2n+12 = 4n2+4n+1. factorising the 4 out of the first two terms gives =4(n2+n)+1. 4(n2+n) is a multiple of 4 due to the factored out 4, and the +1 after means that any odd number squared is one more than a multiple of 4.

HJ
Answered by Harry J. Maths tutor

3015 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these simultaneous Equations: 4y-2x=8 and 2x-y=7


Find x. x^2 + 6x + 5


-3<n<1 n is an integer, write down all the possible values of n.


Find x when 2x^2-4x-6=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning