prove that any odd number squared is one more than a multiple of four.

any odd number can be written as (2n+1), where n is any integer (whole number). Squaring any odd number is therefore= (2n+1)2 . expanding the brackets gives =4n2+2n+2n+12 = 4n2+4n+1. factorising the 4 out of the first two terms gives =4(n2+n)+1. 4(n2+n) is a multiple of 4 due to the factored out 4, and the +1 after means that any odd number squared is one more than a multiple of 4.

HJ
Answered by Harry J. Maths tutor

3144 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify 3(m+4)-2(4m+1)


Solve the Simultaneous Equation: 2x + 3y = 15 and 5x + 4y = 13


0.15^2 x (1-0.15)^3 to 2 s.f


What is completing the square and how do you do it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning