In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M= 300e^-0. 5t

The initial mass is found by putting t=0 into the given equation, so the initial mass is 300g. When the mass has decreased to half its value, M=150g. This gives us 150=300e^-0.05t, so e^-0.05t=1/2. Natural log of both sides and re-arranging for t gives t=-ln(1/2)/0.05=13.9 minutes.

TT
Answered by Theo T. Maths tutor

5843 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 2y^(1/2) -7y^(1/4) +3 = 0


How would you determine what sort of stationary point this curve has? x^3 - 6x^2 + 9x - 4


Prove that (1-cos2x)/sin(2x) = tan(x) where x ≠ nπ/2


I don't fully understand the purpose of integration. Could you please explain it to me?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences