Find the set of values for which: x^2 - 3x - 18 > 0

Factorise the equation to find the critical values:
x^2 - 3x - 18 > 0 (x-6)(x+3) > 0
Critical values:x - 6 = 0x = 6
x + 3 = 0x = -3
Draw a graph where a parabola (shape of a quadratic equation) intersects the x axis at x=6 and x=-3From this, can see that the graph takes values bigger than 0 in the ranges of x>6 and x<-3
Answer:x > 6x < -3
Can check answer by plugging in values for x from this range into the equation, e.g. x = 7, f(x) = 10 which is bigger than 0. x = -4, f(x) = 10 which is bigger than 0.

Answered by Maths tutor

5360 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find all solutions to the equation 8sin^2(theta) - 4 = 0 in the interval 2(pi) < (theta) < 4(pi)


How would I find the indefinite integral of x*cos(x) dx


What is the sum of the first 10 terms of the geometric series 32 + 16 + 8 + ... ?


Integrate this funtion f'(x)=2x +4 with respect to x (C1 integration)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning