Find the set of values for which: x^2 - 3x - 18 > 0

Factorise the equation to find the critical values:
x^2 - 3x - 18 > 0 (x-6)(x+3) > 0
Critical values:x - 6 = 0x = 6
x + 3 = 0x = -3
Draw a graph where a parabola (shape of a quadratic equation) intersects the x axis at x=6 and x=-3From this, can see that the graph takes values bigger than 0 in the ranges of x>6 and x<-3
Answer:x > 6x < -3
Can check answer by plugging in values for x from this range into the equation, e.g. x = 7, f(x) = 10 which is bigger than 0. x = -4, f(x) = 10 which is bigger than 0.

Answered by Maths tutor

5174 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 3x^(3) + 7x^(2) -4x


A curve has the equation x^2+2y^2=3x, by differentiating implicitly find dy/dy in terms of x and y.


Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.


Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning