Make x the subject of the formula: y=(x+5w/2)^0.5

First recognise that (x+5w/2)^0.5 is the same as the square root of (x+5w/2). Then square both sides of the equation to get: y^2=(x+5w/2).Multiply both sides by 2 to eliminate the fraction from the RHS: 2y^2=x+5w.We can then minus 5w from both sides to leave x alone on the RHS: 2y^2 - 5w = x.Thus, we have made x the subject of the equation: x = 2y^2 - 5w

CW
Answered by Charles W. Maths tutor

3633 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A circle is touching a square. The area of the square is 64 cm^2. Work out the area of the circle.


The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) . The straight line L2 passes through the origin and has a gradient of -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.


Expand and simplify (x+6)(x+4)


Factorise fully 3x^2 -48


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning