Make x the subject of the formula: y=(x+5w/2)^0.5

First recognise that (x+5w/2)^0.5 is the same as the square root of (x+5w/2). Then square both sides of the equation to get: y^2=(x+5w/2).Multiply both sides by 2 to eliminate the fraction from the RHS: 2y^2=x+5w.We can then minus 5w from both sides to leave x alone on the RHS: 2y^2 - 5w = x.Thus, we have made x the subject of the equation: x = 2y^2 - 5w

CW
Answered by Charles W. Maths tutor

3196 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that 6sin(60◦) + 5tan(60◦) can be written in the form √k where k is an integer.


How to determine the number of unique real roots of a quadratic equation.


Solve 3x2 + 7x – 13 = 0 Give your solutions correct to 2 decimal places.


A bag has 3 red balls and 5 green balls. I take out 2 balls, without replacing them. What is the probability of choosing at least one red ball? Give your answer to 3 decimal places.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences