Solve the simultaneous equations x+y=8 and 3x-y=4.

Notice that y has the same coefficient (ignoring the sign) in both equations. So, we will use the elimination method. The elimination method means that we will combine the two equations to eliminate the y variable, allowing us to find the value of x. Then, we will substitute this value of x in order to find y.Since y has opposite signs in the two equations, we will eliminate y by adding the equations. Adding gives (x+y) + (3x-y) = 8 + 4. Simplifying gives us 4x = 12 so x = 3. Now, by substituting x = 3 into x + y = 8 we get that 3 + y = 8 so y = 5. Hence we have solved our simultaneous equations and have that x = 3 and y = 5.

FS
Answered by Fiona S. Maths tutor

5600 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Explain the difference between the domain and range of a function.


Steve wants to put a hedge along one side of his garden. He needs to buy 27 plants for the hedge. Each plant costs £5.54 Steve has £150 to spend on plants for the hedge. Does Steve have enough money to buy all the plants he needs?


When do I use the Sine rule?


Determine (27/8)^3/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning