How do I integrate sin^2(x)?

First, remember the compound angle formula for cosine:

cos(2x)=cos^2(x)-sin^2(x).  Now use the identity sin^2(x)+cos^2(x)=1 to give:

cos(2x)=(1-sin^2(x))-sin^2(x)=1-2sin^2(x)

Rearranging this so we have sin^2(x)=1/2(1-cos(2x))

Replace this with the original integration and use the chain rule to get:

1/2(x-1/2sin(2x))+c

CD
Answered by Christopher D. Maths tutor

5569 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.


integrate by parts the equation dy/dx = (3x-4)(2x^2+5).


A curve has equation (x+y)^2=x*y^2, find the gradient of the curve at a point where x=1


Express 9^(3x+)1 in the form 3^y giving y in the form of ax+b where a and b are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning