How do I integrate sin^2(x)?

First, remember the compound angle formula for cosine:

cos(2x)=cos^2(x)-sin^2(x).  Now use the identity sin^2(x)+cos^2(x)=1 to give:

cos(2x)=(1-sin^2(x))-sin^2(x)=1-2sin^2(x)

Rearranging this so we have sin^2(x)=1/2(1-cos(2x))

Replace this with the original integration and use the chain rule to get:

1/2(x-1/2sin(2x))+c

CD
Answered by Christopher D. Maths tutor

5374 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0


The line PQ is the diameter of a circle, where points P and Q have the coordinates (4,7) and (-8,3) respectively. Find the equation of the circle.


When performing differentiation in core 3, in what circumstances do I apply the chain, product and quotient rule?


Find the turning points of the curve y=2x^3 - 3x^2 - 14.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences