Given y = 3x^(1/2) - 6x + 4, x > 0. 1) Find the integral of y with respect to x, simplifying each term. 2) Differentiate the equation for y with respect to x.

  1. When integrating remember the general rule: x^n --> x^(n+1)/(n+1). Now look at each term separately. 3x^(1/2) --> 3x^(3/2)/(3/2) = 2x^(3/2)-6x --> -6x^(2)/2 = -3x^24 = 4x^(0) --> 4x^(1)/1 = 4xCombining we find that the integral of y with respect to x equals, 2x^(3/2) - 3x^(2) + 4x + cn.b. Need to remember the constant "+c"
    2) When differentiating remember the general rule: x^n --> x^(n-1) * n = nx^(n-1). Again now look at each term separately.3x^(1/2) --> 3x^(-1/2) * (1/2) = (3/2)x^(-1/2)-6x = -6x^(1) --> -6x^(0) * 1 = -6x^(0) = -64 --> 0Combining we find that the differential of y with respect to x equals, (3/2)x^(-1/2) - 6
SO
Answered by Scott O. Maths tutor

3241 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


Find the equation of the tangent to the curve y = (5x+4)/(3x-8) at the point (2, -7).


Why does the constant disappear when differentiating a function?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning