For what values of k does the graph y=x^(2)+2kx+5 not intersect the x-axis

Where the graph intersects the x-axis, x2+2kx+5 must be equal to zero. Thus we can answer the equivalent question: For what k does x2+2kx+5 = 0 not have a solution?

This is now a simpler problem (roots of a quadratic equation). We can apply the common method of considering the discriminant of x2+2kx+5. Using standard quadratic formula notation where in this case a=1, b =2k and c=5 we evaluate the discriminant : b2-4ac= (2k)2-4*1*5 = 4k2 -20.

Now since the discriminant appears in a square root sign in the quadratic equation, if it is negative there can be no real solutions to the equation ( great this is what we want!).

Thus we want discriminant negative: 4k2 -20 <0. Divide both sides of the inequality by 4 so we have k2-5<0.

Now this is where we must take great care, the following reasoning is a common MISTAKE: rearragne the inequality so we have k2 < 5, then squarrot both sides so we have k < sqrt(5) or k < - sqrt(5) . The second inequalit is implied by the first thus the discriminate negtive for all k values les then the sqrt(5). THIS IS INCORRECT.

When dealing with inequalities involving powers such as we are here we must be extremely careful. the mistake in the reasoning above is when we say k < - sqrt(5), this is actually a form of the common mistake of not inverting the inequality when multiplying both sides of an equation by a negative. Instead when dealing with inequalities with powers it is always much wiser to sketch a graph of the situation.

k2 - 5 is the standard quadratic U shape (think y=x2) shifted down by 5. Having sketched this out it is clear that this graph is less then 0 when it is inbetween it's two roots. 

The roots of k-5 are easy to find: k-5 = 0 implies k2 = 5 implies k = sqrt(5) or k = -sqrt(5).

Comparing this with the graph we can now see that the discriminant is negative for - sqrt(5) < k <  sqrt(5). Thus these are the values for which the graph y=x2+2kx+5 does not intersect the x-axis.

Hugh K. A Level Maths tutor, GCSE Maths tutor, 13 plus  Maths tutor, ...

9 months ago

Answered by Hugh, an A Level Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist


£26 /hr

Alex B.

Degree: Physics (Masters) - Durham University

Subjects offered:Maths, Physics


“About me: I’m Alex and I have just completed my first year studying physics at Durham University, with a first. I have a passion for mathematics and how it can be applied to solve problems in physics. Throughout my A levels, other stu...”

£20 /hr

Christopher C.

Degree: Physics (Bachelors) - Manchester University

Subjects offered:Maths, Physics+ 1 more

Further Mathematics

“I am a friendly, patient tutor who is passionate about their subject and enjoys teaching others about it.”

MyTutor guarantee

£20 /hr

Matthew S.

Degree: Economics (Bachelors) - Exeter University

Subjects offered:Maths, History+ 2 more

Extended Project Qualification

“Who am I? I am a 3rd Year Economics Student at the University of Exeter. Economics has always been at the top of my interests meaning that I have real passion for all things economics and math based which I will aim to instill into my...”

About the author

Hugh K.

Currently unavailable: for new students

Degree: Mmath - G103 - Mathematics (Masters) - Warwick University

Subjects offered:Maths, Physics+ 2 more

Further Mathematics

“About Me: I am a mathematics student at Warwick. I pride myself on having a deep and thorough understanding of mathematical concepts from A level to below. I feel I have encountered the most common classic mistakes mathematics students...”

You may also like...

Posts by Hugh

For what values of k does the graph y=x^(2)+2kx+5 not intersect the x-axis

If cos(x)= 1/3 and x is acute, then find tan(x).

If n is an integer prove (n+3)^(2)-n^(2) is never even.

Other A Level Maths questions

How do I differentiate y=(4+9x)^5 with respect to x?

Differentiate: y = xsin(x)

How do I solve equations with modulus functions on both sides?

Using Discriminants to Find the Number of Roots of a Quadratic Curve

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss