If n is an integer prove (n+3)^(2)-n^(2) is never even.

Let us begin by simplifying the expression:(n+3)2 - n2 = (n+3)(n+3) - n2= n2 + 6n + 9 - n2 (expanded brackets)= 6n + 9 (collected like terms)= 3(2n+3) (taken out a factor of 3)Now we can consider this simpler equivalent expression.3 is an odd number2n is even thus 2n+3 is odd (even plus odd is always odd)so we have an odd*odd which is always odd, thus never even and we are done.

HK
Answered by Hugh K. Maths tutor

6216 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation x^6 + 26x^3 − 27 = 0


In a geometric series, the first and fourth terms are 2048 and 256 respectively. Calculate r, the common ratio of the terms. The sum of the first n terms is 4092. Calculate the value of n.


You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.


Given that f(x) = x^2 (3x - 1)^(1/2) find f'(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences