If n is an integer prove (n+3)^(2)-n^(2) is never even.

Let us begin by simplifying the expression:(n+3)2 - n2 = (n+3)(n+3) - n2= n2 + 6n + 9 - n2 (expanded brackets)= 6n + 9 (collected like terms)= 3(2n+3) (taken out a factor of 3)Now we can consider this simpler equivalent expression.3 is an odd number2n is even thus 2n+3 is odd (even plus odd is always odd)so we have an odd*odd which is always odd, thus never even and we are done.

HK
Answered by Hugh K. Maths tutor

6912 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of y= e^3x / 1+e^x using calculus.


Find dy/dx in terms of t of the parametric equations x=4e^-2t, y=4 - 2e^2t


Write cosx - 3sinx in the form Rcos(x + a)


How do I find the co-ordinates of a stationary point of a given line and determine whether it is a minimum or a maximum point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning