If cos(x)= 1/3 and x is acute, then find tan(x).

Consider a right angled triangle. Call one of the angles (not the right angle) in this triangle x. We can do this as we are told x is acute. The side opposite to x label O, the side adjacent to x label A, and label the hypotenuse H.Now from SOHCAHTOA cos(x) = A/H = 1/3 and tan(x) = O/A . We also know by pythagoras that A+ O2 = H2 . We shall now combine these equations to get our result.A/H = 1/3 implies H = 3A implies H2 = 9A2. Substituting this result into our euation obtained by pythagoras we get: A+ O2 = 9A2. Rearranging: O2 = 8A2 implies O2/A2 = 8 implies (O/A)2 = 8. Now we take the square root of both sides. Here we must take care, O and A are lengths and so are not negative, so we only consider the positive root: O/A = sqrt(8) = tan(x) and so we are done.

HK
Answered by Hugh K. Maths tutor

18373 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation, 6x^2 +3xy−y^2 +6=0 and passes through the point A (-5, 10). Find the equation of the normal to the curve at A.


How do I solve x^2 > 6 - x


Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


Differentiate y = √(1 + 3x²) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning