If cos(x)= 1/3 and x is acute, then find tan(x).

Consider a right angled triangle. Call one of the angles (not the right angle) in this triangle x. We can do this as we are told x is acute. The side opposite to x label O, the side adjacent to x label A, and label the hypotenuse H.Now from SOHCAHTOA cos(x) = A/H = 1/3 and tan(x) = O/A . We also know by pythagoras that A+ O2 = H2 . We shall now combine these equations to get our result.A/H = 1/3 implies H = 3A implies H2 = 9A2. Substituting this result into our euation obtained by pythagoras we get: A+ O2 = 9A2. Rearranging: O2 = 8A2 implies O2/A2 = 8 implies (O/A)2 = 8. Now we take the square root of both sides. Here we must take care, O and A are lengths and so are not negative, so we only consider the positive root: O/A = sqrt(8) = tan(x) and so we are done.

HK
Answered by Hugh K. Maths tutor

18386 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is Integration


The equation of a line is y=e(^2x)-9 and the line has points at (0,a) and (b,0). Find the values of a and b.


At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


Differentiate the following: y = 3x^(1/3) + 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning