What is greater e^pi or pi^e?

Let a^b >b^a, then blna>alnb, (lna)/a > (lnb)/b, Thus we graph the function (lnx)/x, We can see that this tends towards 0 as x tends towards infinity. We can also see that it is increasing from x=0 to a certain value of x. We can then find the maximum value of our function by finding the derivative. By using the product rule and setting our derivative to 0, we find x=e. Therefore (lne)/e>(lnb)/b for any b>0. Thus blne>elnb, e^b>b^e e^pi>pi^e

QED

Answered by Maths tutor

2971 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=x^3 + 4x^2 - 2x - 3 where x = -4


What's the gradient of the curve y=x^3+2x^2 at the point where x=2?


Find values of y such that: log2(11y–3)–log2(3) –2log2(y) = 1


Why is the derivative of ln(x) equal to 1/x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences