What is greater e^pi or pi^e?

Let a^b >b^a, then blna>alnb, (lna)/a > (lnb)/b, Thus we graph the function (lnx)/x, We can see that this tends towards 0 as x tends towards infinity. We can also see that it is increasing from x=0 to a certain value of x. We can then find the maximum value of our function by finding the derivative. By using the product rule and setting our derivative to 0, we find x=e. Therefore (lne)/e>(lnb)/b for any b>0. Thus blne>elnb, e^b>b^e e^pi>pi^e

QED

Answered by Maths tutor

3472 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


differentiate y=(4x^3)-5/x^2


Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.


Express (3 + 13x - 6x^2)/(2x-3) in the form Ax + B + C/(2x - 3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning